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20. Abstract (Continued)

cfousti field at long ranges is propagated in the discrete normal modes of the duct, special

experimental methods were used to resolve individual modal fields so that their measured

characteristics could be compared with predictions. This report presents a detailed description

of the NRL normal-mode model in its current form and describes the experimental evaluation

procedures and results. Salient features of the model include variable sound speed in the water,

slowly variable water depth, statistically rough boundaries, sediment layering, and both shear-wave

and compressional-wave propagation in the bottom. Although certain recognized problems remain

to be solved, it has been demonstrated that the model can in most cases predict the characteristics

of the signal field with sufficient accuracy to be a useful tool in system design, performance pre-

diction, and tactics.4
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SHALLOW WATER ACOUSTICS

SUMMARY REPORT WIRST PHASE)

INTRODUCTION

In ocean areas of shallow or intermediate water depth acoustic propagation is almost al-

ways influenced profoundly by the proximity of the sea bottom. This is in contrast to the deep

ocean basins, where the omnipresent positive sound-speed gradient at great depths reduces

acoustic interactions with the bottom to a minor role in many applications. Understanding and

predicting acoustic performance in shallow water is further complicated by the relatively high

temporal and spatial variability of environmental parameters usually encountered in these

areas. In general, detection range in shallow water is severely limited both by the high

attenuation which results from interaction with the bottom and by the limited water depth,

which will not support the long-range propagation paths (convergence zone and bottom

bounce) available in deep water.

Wave-theory analysis [I] has shown that at all except very short ranges propagation oc-

curs in discrete normal-modes of the shallow-water duct. A nornial-mode model useful for

predicting propagation phenomena must accommodate the following environmental parameters:

* Variable water depth,

* Statistically rough boundaries,

* Sediment layering,

* Both shear-wave and compressional-wave propagation in the bottom, and

* Variable sound speed in the water both in depth and in range.

A research program within the Acoustics Division at NRL has been addressing the

shallow-water problem. The first phase of this work, dealing with the signal field, has been

completed, and the results are the subject of this report. The program goal has been to

develop tested models of acoustic propagation useful for sonar performance prediction and

selection of optimum operating procedures and to guide the Navy in designing sonars to im-

prove their effectiveness in shallow water. The approach has been to start with the simple

Pekeris [2] normal-mode model and to extend it as necessary, making full use of current com-

puter technology. Each stage of development is tested experimentally at sea.

The program to date has been concerned principally with the basic question of whether a

mathematical model can predict the modal characteristics of shallow-water propagation in an

Manuscript subinittcd August 3, 1977.

-



INGENITO, FERRIS, KUPERMAN, AND WOLF I-

ocean environment. The characteristics of interest are: the degree to which each of the nor-
mal modes is excited by a point source in the duct, the vertical pressure amplitude distribution
in each modal field, the group and phase velocity of each modal field, the attenuation of indi-
vidual modal fields due to a lossy bottom, and the effects of statistical perturbations of the
boundaries. Models for predicting the first four of these characteristics have been evaluated
through experiments conducted in each of three geographical areas having markedly differing
environmental characteristics. Special experimental techniques were devised to permit meas-
urements on individual modal fields. The fifth characteris ;c, concerning the effect of scatter-
ing, has been approached through the development of a %tve-theory scattering model for
shallow-water ducts having statistically rough boundaries. The scattering theory has not yet
been experimentally confirmed.

Recent efforts have addressed the problem of predicting transmission loss in shallow wa-
ter. In a normal-mode formulation the signal field is the sum of all the appropriate normal-
mode terms with attenuation included. Prediction of transmission loss involves the calculation
of the excitation, geometric spreading, and attenuation of each modal field and the summation
of modal components at designated field points. The NRL transmission-loss model uses the
outputs of the normal-mode model with one further modification. On long propagation paths it
is necessary to account for the effect of horizontal variations in the physical properties of the
duct, including changing water depth. At present an adiabatic approximation is used in which
the mode functions and attenuation coefficients are computed using local conditions as inputs,
so that they are assumed to be slowly varying functions of range. Prefatory tests of the model
have been conducted against data from selected shallow-water areas including data taken over
gently sloping bottoms.

At the present stage of development the NRL model can take into account the following
environmental configurations:

* A sound-speed profile which is an arbitrary function of depth,
* The major attenuation mechanisms (absorption in the bottom and scattering

at the boundaries),
* A bottom which can be composed of layers of different densities and sound

speeds, of which the semi-infinite layer can support shear, and
* A slowly varying water depth and sound-speed profile as a function of range.

THEORY

Signal Field

The ocean bottom in 'shallow-water areas is characterized by several layers of unconsoli-
dated sediment overlying deeper, high-velocity rock layers. Usually the unconsolidated layers
are thick enough that the deencr layers have negligible effect on an acoustic signal propagated
in the water. The high-speed layers can therefore be neglected, and the unconsolidated layers
can be considered to extend to infinity. Unconsolidated sediments can be assumed to behave
like fluids, but the rock layers must be treated as isotropic solids capable of supporting shear.
Occasionally the rock layers are close to the surface and their effect becomes important.

With these facts in mind we have developed two idealized models of the shallow-water
environment which we feel are adequate to treat most cases. The first is a three-layer fluid
model consisting of a layer of constant-density water having a sound speed dependent only on

2
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depth and overlying a bottom consisting of two fluid layers. The upper bottom layer also has 
constant density and a sound speed dependent on depth, and the second bottom layer is a '

semi-infinite constant-density fluid having a sound speed that is constant. The second model is rri

the same as the first except that the final semi-infinite layer is an isotropic solid having con-
stant compressional-wave speed, shear-wave speed, and density.

These two models are formulated for range-independent, nonlossy media with smooth
parallel boundaries. Attenuation due to bottom loss and attenuation due to surface and bottom
scattering are later added as perturbations. Both models and their refinements will now be dis-
cussed in detail.

Three-Fluid Model in the Ideal Case of No Afenuation

The geometry of the ideal three-fluid model is shown in Fig. 1. A fluid layer of thickness
HI, constant density p and depth-dependent sound speed cl (z) is bounded above by a
pressure-release surface and below by a second fluid layer of constant density P2 , depth-
dependent sound speed c2 (z), and thickness H2 . The third layer is a semi-infinite fluid with
constpnt density 3 and sound speed 3 . A Cartesian coordinate system is defined so that the
pressure-release surface lies in the xy plane and the z axis is perpendicular to the surface with z
increasing downward.

C0.0,2

1 ~ ~ ~ ~ C(Z

Fig. I - The geometry of he
ideal three-fluid model

l

- A harmonic point source of unit so
desired to calculate the sound field at th
velocity potential j (x, , z) satisfies the eq

+I~J
where we have dropped the time dependei
source, and where

c (z) = cl (z) for < z < H.

= 2 (z) for HI < z < H,

= c3 for H + H2 < z <

1

2~~~~~~~~~~~,I 2 (Z)

urce strength is on the z axis at depth z and it is
e point (x y z). At any point in the medium the
quation

= -8(x) 8(y) 8(z-zO) (1)

lce e i", in which is the angular frequencyof the

+ H2,

< m0.
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It should be noted that if the source is not harmonic but emits a pulse f(t), the velocity

potential 40 (x. y, z., ) Is

* (x,y.z,) - | g()(x yz, w)e #do. (2)

where

and + (x, y, z, w) is the solution of Eq. (1).

At each of the interfaces we have boundary conditions. At the surface the pressure-

release condition means that

4(xy.0) -0. (3)

At the intcrf-ce z - HI the continuity of pressure gives

p, 0(1) (x, y,HI ) - P2'0(') (XI ,HI (4)

and the continuity of tht normal component of particle velocity gives

Z I - &) -HI ()

We have introduced 'ie notation

| +~~~~~~~~~~(x,.-, Z) (1) (x., z) for 0 -< z HI

4 (2)(XyX) for HI < z4 HI + H2 ,

(3) (x, y, z) for HI + H2 < Z <0

At the z = HI + H2 interface we similarly have

P20 (2) (x, y, HI + H2 ) -p3 (3 (x,y, H + H2) (6)

and

I: |-HI +12 aZ H i +H2 (7)

We also require that a radiation condition be satisfied; that is, we must have outgoing waves at

large distances from the source.

To solve Eq. (1), we perform a double Fourier transform on the variables x and y, ex-

pressing 1 (x, y, z) as

[1 ¢~~~~~~~~~~~~ (XI Y. Z) = 21T 2 (1 lwz)et1 Y d y(8

with

u G(q1 , ??Y Z) = J 0 (x, y, z)e -i(7,x + y)dx dy.

Substituting Eq. (8) in Eq. (1), we obtain the equation for u( , Yz),

d2U + [k2 (z) -, 2 u = -8 (z -z 0 ) (9)

dz 2

-. 4
I ,~~~~~~~~~~~~~~~~~~~~~
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t where A(:) - /c(:) and ,}2 -i" + ,2. We note that u(z) must satisfy the boundary con-

ditions given by Eqs. (3) through (7). To solve Eq. (9), we expand u(z) in the complete set of

eigenfunctions u, (:) which satisfy the equation

d, + k2(:) - 1|,, -O (10) !

and the boundary conditions Eqs. (3) through (7), and in addition we require that I,,u (z) be

bounded as : - -. It can be shown that the eigenfunctions u,, (z) form a complete orthonor-
mal set satisfying the orthonormality relation

f p u,, (z)uIt (z) dz - 8,,,

where he density p takes its appropriate value in each layer. The spectrum of eigenvalues

consists of a discrete part and a continuous part, the discrete eigenvalues occurring in the inter-

val

<'k< < max or
C3 ~ ~I (z) C2(z)j

provided that w/c3 < ax /c1 (z) or uo/c2 (z) 1. If the latter inequality does not hold, the

eigenvalue spectrum is continuous. In the present problem we consider only the discrete

eigenvalues, since the continuous spectrum makes a negligible contribution except at ery

short ranges.

Proceeding with the solution of Eq. (9), we expand u(-1X 7by z) in the u (z)'s,

II(-Q,, -yo F. 11 a,x, 70 u,,(z),
.,

and substitute this expansion in Eq. (9). Then using Eq. (10), multiplying the resulting equa-

tion by p (z)u.. (z), and integrating over z from 0 to - , we find

p (zO ) u,, (Zo)

Thus

u1 (n X , qy, z) = p (Z) till (20 )u,, (Z)
11 (!xP sy Z) = P (o ) S P - k,2' 

and thus

(, ) P(Zo) J ,, u(Z,, (z e (z) + d7)

Since the problem is cylindrically symmetric, we can transform to cylindrical coordinates

(r, 0, z) and, remembering the radiation condition, perform the integration in Eq. (11), finally

obtaining

b(r, ) = p (zo) ,, (zo )u, (z) H (k r) (12)

5
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where 11o) is the zero-order Hankel function of the first kind. At sufficiently long range wecan use %,e asymptotic forwl of the Hankel function

Ho ) (k r) 2 ei(- 7/4)

and, restoring the time dependence, obtain for the velocity potential
:) ' i 'p (z0) r 1 2 e -i#/4 U, (Zo )un (Z) i(kr - at)(r. Z~e ip (Zo e , khA . e (13)

The solution shows that the sound is propagated in the normal modtes of the duct, eachmode suffering cylindrical spreading and having a characteristic phase velocity w/kn a variationwith source depth proportional to u,, (z 0 ), and a variation with receiver depth proportional to. ,, (z). If the source emits a pulse, it can be shown from Eq. (2) that each mode is propagatedwith a group velocity

Un ak 
(14).

The modes, which overlap at the source, then tend to separate at increasing range.
The normal-mode method has reduced the problem to the solution of Eq. (10) with theboundary conditions, an eigenvalue problem in one variable. The solution yields the eigenfunc-lions u, (z) and the eigenvalues k which are then used in Eq. (13) to obtain the sound field.

Three-Fluid Model with Attenuation Included

In the preceding treatment of the three-fluid model we have assumed no loss mechan-isms in any of the media. Attenuation due to the water layer itself is small at the frequencies ofinterest and the propagation distances possible in shallow water, so we neglect it and confineour attention to bottom loss and loss due to scattering at the boundaries, which are generallyirregular.

Let the bottom be characterized by complex wavenumbers whose real parts are W/c 2 (z)and wo/c3 and whose imaginary parts are e2 and 
3 , the latter assumed to be independent ofrange and depth. The imaginary parts 2 and 3 are the plane-wave attenuation coefficients inthe second and third layers. The eigenfunctions un (z) and the eigenvalues k then will becomplex; their complex conjugates will be denoted by Un (z) and k We have that

+ ||() k u)= 0 for 0 < z < H (5)dz 2 n

d2u (2) + ) )2 kJ (2
d:z2 +|c 2 (z) + if - It"2) = O for H < z < H + H2 , (16)

and

1d 2

6
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w("e:e u,1 ) (:), u,(2) (Z), and , (z) denote ,ie eigenfunctions in the first, second, and third

layers respectively. Multiplying Eq. (15) by u,, (z) and subtracting from its complex conjugate,

we obtain

u l)4 n _ U 1)i2--k2 k2 (1 ) u,(I) 0. 18,42 it) d 2

Inttrating Eq. 125) from 0 to HI and performing one partial integration yields

| Wa dz u - (k - k, 2 J U Pl2 dz- 0. '(19)

Performing similar operations on Eqs. (16) and (17) gives

i| (2) du 2
- u (2 2-1W+1 _ -2k12 2| 2 dZ

L ~ dz '~dz IH L I u, 11 d

I~ +H2 I u (2)1 2
= -____ dz (20)

4/e2w fil C2 (z)

and

i-(3) I _ _ tin 2E k__-__I_- () 2

1Uf(3) dz d U ( nk, -kn H +H +H2U

C 4'ej +H2 I U MI 2
d, (21)

Letting kn =Kn + i8n, multiplying Eqs. (19), (20), and (21) by PI. P2, and p3 respectively,

and adding, we obtain after some manipulation

8n fE2Yn(2) + ' 3 y,,3) + So + SI + S2 - (22)

with

(2) PI f it~ +u,2 1 1(I2
yn (2) = P2 fi I I( )dz/ N2 , (23)

n K, it, ~~C2 (Z)

' n K o C I U M) 2 dz / N2 , (24)
K, 3 HI + 11,

SO = PIun() 1- -n z ] N 2 , (25)
PI" dz - dz j: 

_______ 1 1(2)~~~di (2)__ d,-j(2) 
___ ___ (I) -u U"2 ~ vl(2) 

[ PI ) dz ) _'i dz j: -1/ P2 l dz l dz |

N 2

(26)

i- (2) I - U"2 n i _______ - U"3 -~

I 'I

2 = N2

(27)

7
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and

N2 p I |u(I I 1 2 d + P| 2 dz + P3 H + IU!I I dz, (28)

where we have assumed that u and -

The first and second terms in Eq. (22) are the contributions of loss in the second and

third layers to the mode attenuation coefficient ens The last three terms in Fq. (22) vanish if

the usual boundary conditions hold, and it will be shown in a later section how these terms

can be used to obtain the loss when the boundaries are randomly rough. If the usual boundary

conditions hold and if a2 << oC2 (z) and e3 << /C3, we can use as an approximation the

u, (O)'s and the k 's calculated from the ideal case. This is a good approximation for most

shallow-water areas and allows the straightforward calculation of 8n if e2 and e; are known.

Solid Bottom Model in the Ideal Case of No A tentuarion

The solid-bottom model is exactly the same as the three-fluid model (Fig. 1) except that

the semi-infinite fluid layer in the latter is replaced by a sermi-infinite isotropic solid layer with

compressional-wave speed c3c, shear-wave speed C3,, and density p3, all constants.

Following Ewing, Jardetzky, and Press 13], we will characterize the acgust.ic field in the

solid layer by velocity potentials b (3) and p (3) satisfying the equations

V2X'3) +1-- 1 '3 =0
C3r

and

V2+ (3) +1Ž- 12 3) =0,

where we have assumed cylindrical symmetry and will be working in cylindrical coordinates.

In the two fluid layers Eq. (1) and the boundary conditions given by Eqs. (3), (4), and (5) still

hold. At the boundary z = HI + H2 , between the second fluid and the solid, we require that

the normal component of the displacement (or velocity) and the two components of the stress

be continuous.

To solve the problem,we use the same procedure as in the fluid case, transforming the ra-
(3) (3) in terms of the set~3) (3

dial variable and expanding b ( and P ( in terms of the set of eigenfunctions u (3) and v (3)

respectively, defined by the equations

d2u (31 i 
Ld:2U2 + =0 -k21 u( ° (29)

and
d2V (3)+| °1-k2 ,3 

~~~ ~~~~k kjvIM -0. (30)

Equation (10) sLil holds for u, and uI 2 , as do the boundary conditions Eqs. (4), (5). and

(6). At the boundary z HI + H2 the continuity of displacement gives

8
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2 v(3) I + 2 2 (3)

+dz 
2 C'3s J 

.In . ....... V k. enmnneIUnt of sltress gives

plun(2) - p 3 U(3 )

2i (3 ) 2 3 (3
c 3~ I d ~ u ~ ~ ~ ~ + v I i d vW3

- 2P3 I 7 dz
2 Jc3cj1 dz 3

and the continuity of the tangential stress gives

du (3 ) d2v,13 )
- 2 " + 2-

dz dz2

since the tangential stress in the fluid vanishes.

Equations (10), (29), and (30) together with the boundary conditions Eqs. (3), (4), (5).

(31), (32), and (33) and the radiation condition define an eigenvalue problem. The discrete

eigenvalues occur in the interval

w < kn for n = I
c3 s

ana

03 < k, < max1 (Z) or I for n > 1.
w h e r e w e h v e a s s u m e t h o g o tIh t > m r I C 2 ( z ) o rI z ] h i g n u c i n r

where we have assumed throughout that C3g > min [c, (z) or 2 (Z)]. The eigenfunctions are

normalized according to the condition

PI f Un ) A,'1 dz + P2 fH 14(2) U 1 dz
0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~(4

+ P3 S;H+,I, fq q + r V3) + rV, 3)] dz = Bn.,

where

and
dun(3)

n, dz

(3) d (3)q,, = Un dz

+ dz2 -2 |C5 n 

The velocity potential in either or the fluid layers, in which we are primarily interested, is

still given by Eq. (12) or at sufficiently long range by Eq. (13). The group velocity is still given

by Eq. (14).

9

_ du3
dz

(31)
I¶-

+ I 1 2 v,(3).

(32)

(33)

I "W T!Iprw - � --. -- ,7--'1--'1' "

If'

the continuity 01 1n- 11

(34)
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Solid-Botton Model with Atteuction Included

The loss mechanisms can be introduced into the solid model by the methods used in the

three-fluid case. As before, we assume that the wavenumbers of the bottom layers are complex.

Let 2 be the imaginary part of the wavenumber in the second layer whose real part is

w/c2 (). In the third layer let the compressional wavenumber have real part wIc3, and ima-

ginary part E3,. and the shear wavenumber have real part (o/c3 , and imaginary part E3, Then,

by the same method used before, we can derive an expression for the mode attenuation

coefficient 8,, We find that

8 f E (2) 3 + 3 Yn(3s) + so + SI + S2,

where y (2) is given by Eq. (3), as in the three-fluid case. The attenuation ratios 'Y(30 and

Yn are

|2 2 !- I 11 [ 1(

V,, P3 1 14j f_ _I 213/21 dz J..i+1

2K 2 K,

and

P2 ~~ 14K 2- 1 w 21
(3 s) ,K

2Kg 1 d 2( 2 | (36)

The terms S0 and S1 are given by Eqs. (25) and (26) respectively, except that N2 is replaced

by the normalization expression for the solid case, that is, Eq. (34) with n = m. Roughness at

the fluid solid interface has not been considered; thus we set S2 = 0. As before, we approxi-

mate Eqs. (23), (35), (36), (25), and (26) by using the unperturbed values Of u (I) u() u,(3),

v 3) and k,,, which enables us to calculate the mode attenuation coefficients 8,, if e2 E3X. and

e are known.

Boundary Roughness

In this section we consider those effects on acoustic propagation in shallow water due to

the random roughness of the boundaries. Essentially, rough boundaries will cause a decay in

the mean value of the acoustic field as a function of range. The effects of boundary roughness

can be included in a normal-mode model by using appropriate boundary conditions on the

mean field. These boundary conditions characterize the roughness and will depend on the rms

height Of the roughness and the surface-wave spectrum which characterizes the horizontal

10
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variation of the surface statistics. One can then solve the wave equation for the mean field
with these new boundary conditions.

In what follows we will outline the derivation of a general form of rough-boundary condi-
tions. More detail is given in two recent papers 14,5]. That is, we will consider the boundary
conditions associated with a randomly rough two-fluid interface. In the limit of the density of
the second fluid going to zero, such a class of boundary conditions also includes the pressure-
release condition.

To be reasonably assured that the derived boundary conditions will give plausible results
in a waveguide, we will first use these conditions to derive reflection and transmission
coefficients at a randomly rough two-fluid interface. We will then show that in the Kirchhoff
approximation they reduce to those obtained by earlier investigators. We will present calculat-
ed results for the reflection of sound from an ocean surface described by the Pierson-
Moskowitz model of a fully developed sea. We will show that in this example the reflection
coefficient is a function of wind speed and wind direction. This is not the case in the
Kirchhoff approximation.

Next we will apply these boundary conditions to the waveguide problem. The result is
that the wavenumbers associated with each normal mode (of a lossless medium) become com-
plex. The imaginary part of each wavenumber, as we discussed in the section titled Signal
Field," is the attenuation coefficient due to scattering associated with that particular normal
mode. At no point in the derivation is any ray approximation made; the formalism is strictly
wave-theory analysis. We will present calculated results for various ocean conditions where
sound-speed profile, wind speed, and wind direction are varied.

Boundary Conditions for a Randomly-Rough Two-Fluid Interface

Figure 2 displays the two-fluid rough surface geometry. The fields are described by velo-
city potentials v and v2 in the regions with sound speeds cl and 2 respectively and densities
pI and P2 respectively. The rough surface is described by the random function a (7) with

mean zero where 7 = (xy). The rms value of a and its transverse gradient are taken to be

INCIDENT Z
WAVE

REGION I I REFLECTED
pIcl I | WAVE

zoa(r) r (x,y)

REGION ItH 

P2 C2 oI TRANSMITTED

X WAVE

Fig. 2 - Geometry of the randomly rough
two-fluid interface
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small as compared to the acoustic wavelength. We require that the pressure and the normal

component of the particle velocity be continuous across the interface. Therefore we must have

P IV (. )1 ,(7) -P2V2 ( z)lz (,) (37)

and

av1 aV2 (38)

where 8/On is the local partial derivative normal to the interface. With a taken to be small, we

can expand Eqs. (37) and (38) in a Taylor series about the plane z - 0. We retain terms to

order a 2. Next, following the perturbation method of Bass [6] (originally developed for a

pressure-release surface), we decompose the velocity potentials into average (<vi>) and sto-

chastic (w, ) parts: v, - < vi > + w, i = 1, 2. After some -algebra and taking averages, we

obtain two sets of boundary conditions at the plane z - 0:

pi < V > -P2 < V2 > =f (WI, 2, < vl > < V2 >) (39)

a<vI > 8<V2 >
______ - O< > =f2 (WI- W2. < vt > < V2 > (40)
az 6

and

PI WI -P2 W2 =g 1 (<VI >, <V 2 > ), (41)

awl a W2

Oz a = g2 (<V >, <V 2 > (42)

The functions fl f2 , gj, and g2, which are complicated functions of the fields and their

derivatives, are presented elsewhere [4] and are not reproduced here. Note, though, that f

and f2 are of the order < a 2 > , which indicates that the mean perturbed field will differ from

the unperturbed field by order < a 2 > . However the functions g1 and 92 are of order a.
Therefore, if we use the unperturbed potentials on the right-hand sides of Eqs. (41) and (42),

these equations will still be valid to order a and, in addition, g1 and g2 will now be known

quantities. We then use a Fourier-transform meth to solve Eqs. (41) and (42) for wI and w,

on the plane z = 0. These results are then substituted into the functions ft and f2 so that the
right-hand sides or Eqs. (39) and (40) are now known quantities. Equations (39) and (40) are

solved by assuming that the acoustic field consists of incoming, reflected, and transmitted plane

waves:

<vt > = e [e ikl- + Re ik'] (43)

and
i (Ej - k,.)

< = Te1
-A.)(44)

In writing dowf Eqs. (43) and (44) we have assumed a time dependence of e-" In Eqs.

(43) and (44) R and Tare the plane-wave reflection and transmission coefficients respectively.

The wave vectors Tk are represented by the vectors (Ajkdj, with kL being the transverse

component of the wave vector. The component kl is the same in both media, because it can
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be shown that Snell's law must still be valid for the mean perturbed field. After we substitute

Eqs. (43) and (44) into Eqs. (39) and (40), we obtain rather complicated expressions for the '

reflection and transmission coefficients. We will present some simpler results obtained by tak-

ing certain limits. The generalized results are given in Ref. 4.

In the limit of the Kirchhoff approximation the complexity of the mathematics is greatly

reduced. The Kirchhoff approximation assumes the "the field near every region of the surface

is essentially what it would have been if the surface had been flat with a slope equal to that of

the irregular surface at the point in question' (7]. We obtain this limit by taking the surface

correlation function to be large with respect to the acoustic wavelength (see Section II of Ref.

4). In this limit the reflection and transmission coefficients are

R -Ro (I - 2 kx2 < U2> (45)

and

T - To| - (kl -k2,) 2 <a2, (46)

where Ro and To are the Rayleigh reflection and transmission coefficients respectively.

If we are considering a pressure-release surface, then Ro - -1 and therefore

R - -1 + 2 k2 <a 2 >.

This result is identical to order < a 2 > to that obtained by Eckart [81 using the Kirchhoff ap-

proximation. Beckmann and Spizzichino [91 have shown that the reflection results from a

rough interface separating two media can be obtained by assuming that the Rayleigh reflection

coefficient is locally valid in the Kirchhoff approximation. Clay [101, using the Rayleigh

reflection coefficient together with the Eckart method, obtained a coefficient identical to Eq.

(45) to order < a 2 >.

Medwin and Hagy [111 used a similar procedure to derive a coherent transmission

coefficient for the case in which the density of the second medium was much larger than that

of the first medium. Their results and the preceding results for T are equivalent to order

< a 2 > . In addition, Eq. (46) indicates that the form of the Medwin-Hagy results (at least to

order < a 2 > ) is val a for arbitrary density ratio and not just in the limit of high density of

the second medium as they originally assumed.

Next we present some results for a non-Kirchhoff case. We consider a pressure-release

surface, so that the mathematics does not obscure the actual method. We obtain the pressure-

release condition by letting P2 vanish. It can then be shown that Eqs. (39) and (41) reduce to

<V> = - <a aw >,z =0, (47)

and

W < - > ,z vZ = °. (48)

Equation (47) specifies that we must know the derivative of w on the surface. We have indi-

cated that we can solve the system of Eqs. (41) and (42) using a Fourier-transform method.

13
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This is accomplished by noting that the stochastic field must originate from the boundary and

hence can be expressed in the plane-wave representation

W I f ie e 1' e If: r(V ) (49)

where

-(k2 -(_ 2) 12

By Fourier-transforming Eq. (48), we obtain a value for rv which we can then insert into Eq.

(49), from which we can then determine aW/az on the plane z -0. Substituting this value into

Eq. (47), we obtain, after much algebra and after taking an ensemble average,

< af 2 > C4 )'e -e 1 ) 7 8 < V 1 (X)> (
=v (2) f d&±d r~ (if:)ei P~~' I) , (50)

where P(C ) is the Fourier transform of the autocorrelation function N(p ) of the surface,
with the argument ji being a displacement vector between two points on the surface. To

lowest order the Fourier transform of the derivative of the field < v (- - 1 ) > can be

shown to be -41rik 1 :82 I-((1-( )1, with 82 being a two-dimensional Dirac delta

function. We can then carry out the integration of ( is and we obtain, after decomposing the

field into incident and reflected parts, the pressure-release reflection coefficient

R I - + 2 r IZ fd, f P(k± -n) (51)

Equation (51) allows us to calculate the reflectivity as a function of the spatial properties of the

surface. In the Kirchhoff approximation the mean value of the reflected field does not depend

on the surface correlation properties [12]. We will present some numerical results in a later

section.

Normal-Mode Attenuation Coefficients Due to Rough Boundaries

We now apply the preceding boundary-perturbation formalism to a waveguide problem

[5]. That is, we would like to solve the three-fluid problem illustrated by Fig. 1, where now the

boundaries at z = 0, z = Hi, and z =.HI + H2 are randomly rough. These boundaries are

now given by z = a(T), z = HI + AI ),and z = HI + H2 + p 2 ),where a,,GIand
,2 are random functions with zero mean. We are therefore interested in solving Eq. (1) for

the mean field with the boundary conditions derived in this section. Actually we need concern

ourselves with only the z-dependent equation given by Eq. (9). Here u (., 7y z) is the

Fourier transform of iS (x, y, z), so that we really require the Fourier transforms of the boun-

dary conditions we derived. For the ocean surface (Eq. (50)) the transformed boundary condi-

tion can be written as

u i < a2> a(6) au. (52)

where

a ( w) = f J df- k 2 () _2 ]I/2 To ( - ), (53)

with PO being the power spectrum of the surface. At the two fluid-interface the transformed

version of Eqs. (39) and (40) can be written as

14
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Pi1 -I)212 - <2> ib i + b2 -l| (54)

and

l _ < 2 > dI II + d2 u, (55)

where b, 2, d, and 12 are complicated functions given in Ref. 5. In deriving Eqs. (54) and
(55), we have gone through the solution of Eqs. (41) and (42) in order to obtain expressions
for the w'sto substitute into the right-hand sides of Eqs. (39) and (40).

We now seek a solution of Eq. (9) using the eigenfunctions which satisfy Eq. (10) and
the boundary conditions given by Eqs. (52), (54), and (55). With these boundary conditions
the eigenvalues and eigenfunctions of Eq. (10) become complex. Rather than redo-the com-
plete formalism as a complex eigenvalue problem, we use the technique described in the sub-
section containing Eqs. (15) through (28) to derive the imaginary parts of the eigenvalues.
The imaginary parts of the eigenvalues, as explained in that subsection, will then be the
normal-mode attenuation coefficients due to boundary roughness.

For surface roughness we use Eq. (25) together with Eq. (52) and its complex conjugate.
The result is

S0 =PI <X 2> (2k,,N 2 ) | Re [a(k , (56)
dz := (6

where a(k,,) is given by Eq. (53).

The expression for the attenuation coefficient due to bottom roughness has a more
involved derivation. Essentially we substitute Eqs. (54) and (55) and their complex conjugates
into Eq. (26). After a great deal of algebra we obtain

S,= < > 2k,,N2)d k 1'(t 1(2k l | (kn ) + p d2 (k) dz I r1

+ p I d, (k,, ) I1 I 2 + E2 (k,,) |-d () 1 (57)

At the deepest interface we can take advantage of the fact that the eigenfunctions in the last
(isovelocity) layer have the analytic form e 3: wIth 3 = [ko - (?o/c3 )21 /2, so that we
know that the ratio of the eigenfunction and its derivative at the interface z = HI + H2 is
simply -1713. Then Eq. (27) together with Eqs. (54) and (55) and their complex conjugates
yield

S2 = < 2 > (2k,,N 2 ) -1{[b 1 (k,,) + p2d, (k,,) 1111(2) d ( +112
2 1 1 n~ ~~~~~ dz

+ p2 d1 (k,) J(
2) 2_,, + b (k,) dz :-HI + 21' (58)

where b, b2 d, and d2 are obtained from b, b2 d, and d2 of Ref. 5 by replacing all sub-
scripts I by 2 and all subscripts 2 by 3.
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The discussion accompanying Eqs. (45) and (46) was concerned with the Kirchhoff ap-

proximation. This approximation greatly simplifies the derived expression for the attenuation

coefficients. For example the expression for the surface attenuation coefficient now becomes

du, 2

So -pt <a 2 > (2knN 2 ) -1 | d k (0) - kI11/2 . (59)
dz : I 

For future reference we also write down the hottom-roughness attenuation coefficient in the

Kirchhoff limit for a two-layered waveguide whose bottom layer contains an isovelocity medi-

um. This attenuation coefficient is

S - <0 2 > (2keN2) -1 [u t((H) 2 (p1/p2)YI (p2 v +pi y) (60)

where

yI =IU/c(HI)]2 - k21

and
y, = [k 2 - (w/c 2 ) 21

Rece.ntly we have also developed a wave-theory method [13] which analytically predicts

the normal-mode attenuation coefficients in a duct bounided by surfaces whose plane-wave

reflection coefficients differ by a small amount from the Rayleigh reflection coefficients. Since

rough boundaries in the Kirchhoff approximation, to the order of the rms roughness, satisfy

the conditions of Ref. 13, the attenuation coefficients should agree with those given above,

though they werc obtained by different techniques. Indeed, if the reflection coefficient given by

Eq. (45) is used, the results are identical to those of Eqs. (59) and (60). Note, though, that

the results presented in Eqs. (56), and (57), and (58) are the generalized coefficients in which

no Kirchhoff approximation was made.

There is also some previous work with which we can compare the above Kirchhoff result.

Clay [14] calculated the mode attenuation coefficients in isovelocity shallow water based on the

idea that each time a ray associated with a normal mode bounces off the surface, it is decreased

in amplitude by the Eckart [8,10] reflection factor. For a given normal mode the number of

bounces to a certain range was calculated from a "skip distance" for a particular normal mode's

ray representation.

The result given by Eqs. (59) and (60) are close to the Clay result but slightly smaller.

This discrepancy can be explained by the same argument used to explain the attenuation of

the acoustic field in the water column due to a lossy bottom [151. Although the mode is at-

tenuated as it is propagated, the boundary conditions must still be satisfied. Thus there will be

a small flux of energy from the bottom through the interface to compensate for the decrease of

the field in the water column, resulting in a smaller mode attenuation coefficient. When one

uses just a skip-distance argument, such a compensation effect is not taken into account. If we

take our result and make both boundaries pressure-release (or rigid) boundaries, then there

will be no such effect, since the field must simply vanish at both pressure-release boundaries

(or the derivatives must vanish at both rigid boundaries). For these cases Eqs. (59) and (60)

are identical with the Clay result.

The surface and bottom normal-mode attenuations are equal for equal rms roughness in

an isovelocity water channel. This can be understood from the ray analogy to the normal-
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mode picture. For an unperturbed case the normal modes correspond to rays (that are actually

plane waves) at angles less than the critical grazing angle at the bottom, that is, rays that are

perfectly reflected at the surface and the bottom. For the isovelocity case the ray's angles are

the same, and equal roughness at both interfaces just diminishes the amplitude of the ray upon

reflection by the same amount.

Transmission-Loss Model

In the previous discussion we emphasized individual normal modes of propagation. We

will now apply these results to the calculation of the signal field of a CW acoustic source. An

expression for transmission loss is also obtained. In this calculation we assume that the re-

ceiver is sufficiently far from the source that only the discrete normal modes make a significant

contribution to the signal field.

If a harmonic point source is operated in the range-independent medium described in the

section titled "Signal Field," the acoustic field may be represented by a sum of terms, each of

which corresponds to a single normal mode of propagation. At a range many acoustic

wavelengths from the source the contribution of the nth normal mode to the instantaneous

signal pressure is given by

p,(t) = S Otr) 11p "(0), cos (k~r - wt- 1/4 )e r"' (61)

r1/2 k 1/2

where S is the rms free-field omnidirectional source level (re 1 m) and the normalized depth (

is equal to z/H 1 . The other quantities have been defined in the section titled 'Signal Field."

If the acoustical parameters of the medium such as water depth, bottom type, or sound-

speed profile are range dependent, the wave equation cannot be separated to obtain Eq. (9).

The direct solution of the unreduced three-dimensional wave equation is considerably more

difficult than is the solution of the separated equations. However, if the environmental param-

eters change sufficiently slowly with range, we may make the approximation that the wave

equation is locally separable. By that we mean that if we want to calculate some property, such

as vertical pressure distribution or attenuation coefficient, of the jth mode at some range, we

may obtain a good approximation to that quantity from the constant-depth model using the

environment at the point of interest. Thus the normal modes are assumed to adapt to the en-

vironment at the point of interest. Given sufficient slowness of the horizontal variation of the

environment we may also assume that mode index is conserved, that is, that the modes are not

coupled by the range-dependent environment [16,17]. Under conditions of uncoupled propaga-

tion, energy originally propagated in the 1 th mode remains in that mode until it is removed by

absorption.

If these two assumptions are correct, we may [18] replace Eq. (61) by

S() = PIl(0O ) I cos ( - i -7r/4)e , (62)

where it and u,, are the eigenfunctions calculated at the source and receiver respectively, dn is

the cumulative phase of the nth mode,

n1 - k (r) dr',
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and A, is the average attenuation coefficient,
I r,

An f 8r J;8(r') dry .
r 0 

The results of an experimental test of Eq. (62) will be presented in a later section.

The total instantaneous pressure P(t) at the field point (r, A) is obtained by summing

the contributions of the N allowed modes:

N ~~~~N U,(40)U (4)
p(I) - p,,(I) - S(4rT)1/2 p n ° cos (12 -CoW - 7r/4)e "'.

The rms pressure, averaged over a time T > 2r is

1/2t7 N Un(Qo)Un r~

< P(t) > - S(4r) 1/2 p211-r I 1/2 cos (, - -7r/4)e | di1

This expression, which considers the relative phases of the individual modes, is called the

coherent sum. The coherent transmission loss obtained from this expression is expressed in

decibels:

TL =10 log1o (27rp2) n e ^ cos i |

+ 1 /2 ° e "rsin + (63)

Loss calculated from this expression will usually exhibit rapid oscillations with range of

order 10 to 20 dB due to the phase-dependent interference effects among the normal modes.

Similar oscillations are observed in measured loss (Fig. 3). The details of this interference pat-

tern are highly sensitive to the values of environmental parameters, such as water depth and

sound-speed profiles in the water and bottom-sediment layers. These quantities, particularly

the bottom-sediment sound-speed profiles, are not usually known with sufficient accuracy to al-

low detailed agreement between measured and calculated interference maxima and minima.

The interpretation of loss measurements like those in Fig. 3 often requires comparison

with model calculatiotis. If observed and calculated loss are rapidly oscillating functions of

range, it is difficult to determine the quality of the agreement, particularly since we do not ex-

pect the naxima to coincide. The comparison is made easier if smooth curves, obtained by

averaging out the interference effects, are used. Smooth calculated transmission-loss curves

may be obtained by adding the energies of the individual modes rather than the pressures. The

phase differences, which generate the interference effects, do not appear in this sum. This

smoothed loss, called incoherent loss, is given by

18
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TL - 1Ologlo (27rp?) £ | 1X/2 e At (64)

Loss-vs-range curves may be obtained from Eq. (64) with much less computational effort

and expense, since the range increments at which the expression is evaluated may be made

fairly large, whereas the increments used for Eq. (63) must be small enough to define the de-

tailed oscillations in the interference pattern. Computation-time ratios of 10:1 are commonly

encountered.

go

so a702 ~ 4 0 i an 

RANGE Nm1

Fig. 3 - Example of measured CW transmission loss

Computer programs have been written at NRL to evaluate Eqs. (63) and (64) using

normal-mode parameters calculated [191 from the fluid-subbottom and solid-subbottom models

described earlier in this theory section. Loss calculated using these programs has been found

to be in good agreement with loss measured over constant-depth and sloping-bottom tracks.

Work is continuing to obtain additional experimental confirmation.

This loss model has been incorporated into the NAVSEA performance-prediction model

for passive sonar in shallow water. This model is now under development at the Naval Under-

sea Center in San Diego.

EXPERIMENTAL TECHNIQUES

Requirements

The objective of the experimental program has been the validation of wave-theory

models in real ocean environments. It can be shown (see Eq. (13)) that the solution to the

wave equation for the NRL model results in the following expression for the pressure ampli-

tude Pa (r, ) for the nth normal mode of the system:

2 I U /2 u, (to) U (C)P (raW sPIurc o, u stregth(65)
for a source of unit strength.
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It follows that at a fixed range the modal pressure amplitude has a functional dependence on

source and receiver depth given by

P" Q; 4, U (CO) U ( (66) 1

where 0, is a constant of proportionality for the nth mode. This relationship is fundamental

in that it defines the degree of excitation or and the relative vertical pressure amplitude distri-

bution in each modal field.

Another intrinsic property predicted by the solution. to the wave equation is the disper-

sion resulting from the differing propagation velocity among modes and by the frequency

dependence of the modal propagation velocity. The group velocity UA of the nth mode is

,ak

This dispersive effect is clearly evident when a short pulse is projected in a shallow-water duct.

The group velocity for any given mode will in general not be constant over the finite band-

width of the pulse; consequently the pulse duration within the modal field will I , progressively

lengthened as it is propagated to increasing range. Additionally, since the group velocity at any

one frequency in general will differ from mode to mode, the modal fields tend to become spa-

tially separated as the propagation distance is increased. In some cases the modal fields frcin a

short pulse will become separated into discrete arrivals at a distant sensor.

Another effect predicted by wave theory is the decrease in intensity of the modal fields as

they are propagated away from the source. Of the several mechanisms involved in propagation

loss, two are predicted as a natural consequence of the wave-theory solution. One is the

geometric spreading as the field expands radially, and the other is the loss due to bottom ab-

sorption. The geometric spreading of the field in a duct of constant depth is inherent in Eq.

(65). It was shown in the theory section titled "Signal Field" that if the attenuation coefficient

e of the bottom material is known, the associated attenuation coefficient 8, of the modal field

can be calculated from

8" n C (ap2/ 2 k,) fH [u,( (z)J2 dz.

Another important loss mechanism, that due to scattering from rough boundaries, is not an in-

herent part of the solution to the wave equation. The relevant theory for scattering effects is

given in the theory section titled "Boundary Roughness." This is a newly developed formula-

tion and has not been addressed by the experimental validation program to date.

In summary, the experimental program has been designed to test the theory relevant to

the following model properties:

* Mode excitation,
* Vertical pressure-amplitude distribution of the modal fields,

* Dispersion, and
* Attenuation.

Another characteristic, mode phase velocities, can be obtained from the solution to the wave

equation, but experimental verification of this property has not been attempted. All of the pro-

perties listed above can be calculated for each of the individual normal modes of propagation.
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Direct validation therefore rquires that appropriate measurements be obtained on the discrete 2
modes rather than on the total signal ficld, which is the sum of, the modes.

Implementation

Since the requirement was to examine the acoustic fields of individual normal modes and 7
since n general more that one normal mode exists at frequencies of interest, it was necessary

to find a technique by which the modal fields could be resolved. As was discussed, under cer-

tain conditions the differing group velocities among modes permit modal resolution by time of

arrival when short pulses are propagated over long ranges. In theory, if a duct is excited with a

pulse of duration , the components of that pulse propagated in any pair of normal modes of

the duct, having group velocities U ,, and U, will be temporally resolved at range

> TU U,,/t U, - U, . (67)

It is assumed here that the pulse length r is not lengthened significantly by dispersion.

There is of course a practical limit to the range at which the resolved modal fields can be

measured, depending on the source level, propagation loss, and background noise. In the ex-

perimental program, coherent sources having resonant frequencies f of 400, 750, and 1500 Hz

were driven by short (3-cycle) gated sine-wave pulses. The mechanical Q of each of the

sources was approximately 4. The projected pulses therefore were approximately 4/f seconds

in duration. Although the sources were driven at maximum power (free-field source levels

ranging from 196 to 203 dB re I LPa at I m), only a fraction of the projected power excited

any individual modal field. This fact, coupled with the broad receiving bandwidths required

(f/4), resulted in a limitation of the usable range to about 20 km. Since the group velocities

have values of the order of 1500 m/s, it can be seen from Eq. (67) that U U,,, - U,, must have

a value of at least 900/f to achieve resolution. The received pulses however are usually

lengthened considerably by dispersion, so that a larger value of I U,,, - U, is required. In

most cases a value of I U. - U,, = 1500/f was found to be sufficient. When this value is

used, a modal field can be resolved when its nearest neighbor differs in group velocity by I m/s

at I'0M Hz, 2 rn/s at 750 Hz, and approximately 4 m/s at 400 Hz.

Figure 4 is an example of group velocities calculated for six modes for a location off Pana-

ma City, Florida, where the water depth was 30 m and the sound-speed profile was as shown in

the inset. It can be seen that at 400 Hz the first and secon modes have the required separa-

tion in group velocities, (4 m/s). Higher order modes are also adequately separated, but under

the prevailing conditions they were highly attenuated and their fields could not be detected. It

can also be seen that the group-velocity function for the second mode has a much higher slope

at 400 Hz than the first mode has. Because of this it would be expected that the pulse duration

in the field of the second mode would be longer than that in the first mode, having been

lengthened to a greater degree by dispersion.

Experimental Procedures

Since the intention was to examine the individual modal fields in both depth and range,

the acoustic field was sampled in depth from near the surface to near the bottom by a vertical

string of hydrophones which was suspended at selected horizontal ranges from the source.

Figure 5 shows the experimental geometry used in all experiments except the first. In the first
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experiment, the source was deployed from a fixed tower, and the hydrophone string was de- ;

ployed ron a ship. Three essentially omnidirectional acoustic sources were used having

resonant frequencies of 400, 750, and 1500 Hz respectively. In all experiments the source

could he suspended at any depth from near the surface to near the bottom.

After the first experiment the remote sensor buoy shown in Figs. 5 and 6 was developed

to serve as a sensor platform. The purpose of this buoy was to permit single-ship experiments

to be conducted in various ocean areas. The basic configuration of the buoy is that of a

cylinder 0.38 m in diameter and 6.1 m long. The buoy floats in a vertical position with about

1.2 m or the cylinder exposed above the water's surface. A strain wire supporting a 270-kg

lead ball is attached to the lower end or the buoy. Twelve hydrophones are clamped onto the

strain wire at any desired spacing and connected to the buoy by individual cables. The elec-

tronics package in the buoy is shown in Fig. 7. In addition to 12 channels of radio telemetry

(2-kHz bandwidth for each channel) for relaying the sensor signals to the mother ship, the

buoy is provided with radio-command circuits for changing gain, for inserting calibration sig-

nals, and for turning the buoy off and on. The telemetry range is approximately 20 km, and

this corresponds roughly to the maximum range at which an adequate signal-to-noise ratio ex-

ists in the acoustic signals.

Fig, 6 - Remote sensor buoy
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Fig. 7 - Electronics package of the remote sensor buoy

An example of the signal received on the buoy hydrophones is shown in Fig. 8. This os-
cillographic recording shows the 12 traces from the outputs of hydrophones in the vertical
string, spaced at 2-m increments beginning at a 5-m depth. The water depth is 30 m. The
projected pulse was 3 cycles of a gated sine wave at 750 Hz. The illustration shows that there
are two principal arrivals which have been temporally separated by virtue of the differinp group
velocities of the modal fields. The first arrival is strongest in the lower half v< the water
column and has a null near the depth of the fourth hydrophone from the top. A phase rever-
sal occurs at the null. The second arrival is predominantly in the upper half of the water
column. The vertical lines in the recording are 10-ms time miarkers, with time progressing
from left to right. The prevailing sound-speed prrfiXc s shown in Fig. 9, and the calculated
group velocities and mode amplitude funttions for the first six modes are shown in Figs. 10
and 11 respectively. The calculated group velocities at 750 Hz were 1507.7 and 1510.0 m/s for
the first and second modes respectively. Since the range between source and receivers was 10
km for this measurement, the arrival times of the first and second modes would be expected to
differ by 10 m/s, with the second mode arriving first. The close agreement between the
predicted properties (vertical phase and amplitude distribution and arrival times) ..id those ob-
served in Fig. 8 was strongly indicative that the observed signals corresponded to those propa-
gated via the second and first normal modes of the duct. Although the calculated group veloci-
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Fig. 8 - An oscillographic recor .n6 -_ . .- 1-
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ties indicated that third and higher order modes should also be resolved, no modes or higherorder than the second are identifiable in the illustrated signals, probably because they were lomore highly attenuated and were lost in the noise.

From data of the type shown in Fig. 8 it is possible to measure the relative strengths ofthe modal fields, their vertical phase and amplitude distributions, their group velocities, and thedispersion within each field. When such measurements are made as a function of range, modalattenuation coefficients can be obtained.

When complete temporal resolution of the modal fields could not be obtained, a spatialfiltering technique was used to enhance the field of one mode while tending to reject all others.To do this, the outputs of the 12 hydrophones were combined in an appropriate summing net-work in which selected polarities and weighting factors could be introduced into each channel.The orthogonal property of the modes permits selection of channel polarities and weightingfactors to produce a preferential response to a selected mode. In the experiments reportedhere, the outputs of the 12 hydrophones were combined in three separate summing networks.The response of each channel was adjusted in each network to be proportional to the value ofand matched in polarity to the selected mode amplitude function at a corresponding depth.The three networks were matched in this manner to each of three modes. The output T of amode filter (summing network) in response to the field of the nth mode is
12

Tn - K U d P (it 0 )I (68)
where K is a systen gain factor. If the modal field has the vertical distribution predicted byEq. (66), Eq. (68) c.n be rewritten as

12,r, Knu,(CO) Un(o. (69)

The theoretical response of the filter to other than the selected mode can be calculated. Theresponse to the mth mode of a filter matched to the nth mode is
12

T - K U(OPm(i. co (70)
i -1If the mth mode has the predicted vertical distribution, Eq. (70) can be rewritten as

12
Tn = Kmum(o) Un(Q) Um(Ci)- (71)

Several sample calculations were made using Eqs. (69) and (71) with appropriate mode ampli-tude functions computed for prevailing sound-speed profiles. In the cases tested, the theoreticalresponse to the unwanted mode ranged from I to 30 dB below the responseto the selectedmode. Even in theoy complete rejection cannot be achieved, because of the finite sampling ofthe modal fields. Experimental tests with temporally resolved modes yielded rejection ratiosonly slightly degraded from theoretical ratios. An example of experimental results is shown inFig. 12. The upper trace is the output of a single hydrophone when the modal fields are nottemporally resolved. The next three traces are the outputs when mode filters are matched tothe first, second, and third modes respectively. Filters such as this were found to be usefulwhen examining a strong modal field which was not temporally resolved from a weak modalfield.
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Fig. 12 -Example of he opuls o the mode filters

During the xperiments sound-speed profiles in the water column were measured by
lowering a pair of velocimneters from the surface to the bottom. The depth for each incremental
reading was obtained frorm te marked cable. The water depth was measured sing a high-
frequency shallow-water depth sounder calibrated against a weighted line. Bottom cores and
grab samples were obtained along each of the propagation paths.

Experimental Sites

Experiments were conducted in each of three geographical areas. The first site was an
area in the Gulf of Mexico approximately 20 km offshore from Panama City, Florida. Experi-
ments were conducted here during several intervals from July 1969 through May 1971. All x-
perinments at this site were conducted along the same propagation path (Fig. 13), where the wa-
ter depth was nearly constant 31 m above a hard sand bottom. The boftom contour along the
path is shown in Fig. 14. In the first experiment at this site, described in Ref. 20, the acoustic
sources were deployed from the fixed tower known as Sta~ge 1, which is a facility of the Naval
Ship Research and Development Laboratory (now Naval Coastal Systems Laboratory), Panama
City, the vertical hydrophone string was deployed from a ship. In subsequent experiments at
this site, and at the next two ites, the sources were deployed from a ship, with the hydro-
phone string being suspended from the remote sensor buoy.

28



NRL REPORT 8179

3V0O

X \ ~~~~~~~~~29'50'

== 15 fa (27.4 m)

20 f'36.6 m)

86 
8530

Fig. 13 - Operational area near Panama City, Florida.

Stage I is a fixed tower.
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Fig. 14- Bathymetry along the 285° bearing line from stage I (Fig. 13)
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The second experimental area was along the southern perimeter of the Gulf of Mexico
on Campeche Bank. Experiments were conducted there during May 1972 over two propagation
paths at each of two sites shown in Fig. 15. All paths had an approximately constant water
depth of 32 m. The bottom was hard limestone with a thin (less than 1/2 m) covering of fine
sand.

N

- - - - l~

"..,W-CAMPECHE ANK

STAA U

STA 

Fig. 15 - Operational area
on Campeche Bank

50 n.mn.

Experiments were conducted in a third area off Daytona Beach, Florida, during No-
vember 1973. This site was selected to provide propagation paths over a sloping bottom. The
location of the propagation paths is shown in Fig. 16, and the bottom contours along the paths
are shown in Fig. 17. T he bottom in this area is sand.
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Fig. 16 - Operational area near Daytona Beach, Flori-
da. Crorses indicate remote sensor buoy locations. Cir-
cles indicate stations that were occupied by the source
ship.

30

I-

i

l

i



NRL REPORT 179

R&NGE (kmIt
0 2 4 6 e 10 12 14 16 le 20

10

E 20

IL
w30,

40

50-

(a) Constant-depth track

RANGE (km)
0 2 4 6 a 10 12 14 16 a 20

tol

20
IH j

I

30

40

50

(b) Gradually sloping track

RANGE kml

2 4 6 a 10 12 14 16 l 20

20

40

B 6-

100

120

40 -

(c) Rapidly sloping track

Fig. 17 - Bathymetry of the tracks off Daytona Beach
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RESULTS

Modal Field Distribution

The constant-depth normal-mode model predicts that the pressure amplitude of the nth-

order mode as a function of depth at range r will be given by Eq. (65). I all acoustic and en-

vironmental parameters except for receiver depth are held constant, the dependence of the

pressure of the nth-order mode on receiver depth is

P cc 14, Q

where u,, ( ) is the solution of

di2 + H2[ 2( -k2 uQg) = O (72)d~~ 2 1 C2 21n 

with the eigenvalue k,1. Equation (72) is Eq. (10) written in terms of the normalized depth

coordinate C. Some general properties of the modal field distribution may be inferred from the

spectrum of eigenvalues. A typical spectrum for a fluid-subbottom case is shown in Fig. 18.

The subbottom sound speed is 3 , the sediment layer is assumed to have a constant sound

speed c2, and c and cmin are the maximum and minimum sound-speed values in the water

column.

~~~~~~I II I IJ!II 
0 W kn w kn-l k5 k 4 k 3 k2 k w

C3 C2 F C min

Fig. 18 - Typical eigenvalue spectrum

In this example pi discrete modes are permitted. To satisfy the boundary conditions of the

fluid model with normalizable eigenfunctions, the eigenvalues must be bounded by W/c3 and

oJ/Cmn. It can be seen from Eq. (72) that at any depth 4 for which w/c(() > k the jth mode

tends to be an oscillatory function of depth. If k > o/c Q ), the eigenfunction is an exponen-

tial function of depth. Thus for the case represented by Fig. 18, all *1 modes are exponential in

the subbottom, and the first n - I modes are exponential in the bottom layer. Throughout the

water layer modes 4 through n are oscillatory. The first three eigenfunctions are exponential in

the high-speed part of the water column.

Since an eigenfunction is generally small in those parts of the medium in which its depth

dependence is exponential, the effect of the sound-speed gradient is to confine the bulk of en-

ergy propagated in a given mode to that part of the medium in which the associated eigenfunc-

tion is oscillatory. Thus the first three modes are confined to the slow-speed part of the water

column, with the confinement most severe in the first mode, since k1 > O/c(Q) over a larger

part of water column than is the case for k2 or k3.

As the frequency of the acoustic signal increases, the eigenvalues k1 increase faster than

w. Thus the number of modes "trapped" by the gradient tends to increase with frequency, and

for a given order mode the confinement generally becomes more pronounced.
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A series of experiments 20,211 was carried out at sea to measure the pressure amplitude

of individual modes as a function of depth under various environmental conditions. For all the

data discussed in this section, the water depth over the propagation path was nearly constant

(31 ± 2 m).

A vertical string of hydrophones was suspended from the anchored remote sensor buoy.

The hydrophones were uniformly spaced and covered as much of the water column as tile

mechanical constraints of the system permitted. The ship then anchored at several range sta-

tions from 4 to 20 km along the 31-m isobath. At each range station coherent sources were

driven by gated sinusoidal pulses at a sequence of depths. For many of the runs dispersion

permitted temporal resolution of individual modal fields, as described in connection with Fig. 4.

The signals from the individual hydrophones were simultaneously displayed using a multichan-

nel oscillographic recorder. The mode order associated with one of the pulses in the sequence

was determined by comparing the signal phase on adjacent channels. The signals associated

with the first mode are all in phase. Those associated with the second mode show one 180°

phase reversal, usually near middepth. The third mode exhibits two phase reversals.

Signal pressures were determined by comparison of the received signal amplitudes with

those of a calibration signal generated by the remote sensor buoy. For each mode resolved and

identified, the peak pressure in the pulse was averaged over 20 pulses, and the average was

plotted as a function of receiver depth to obtain the pressure distribution of the normal mode.

Agreement of calculated and measured pressure-amplitude distributions (plotted on an arbi-

trary amplitude scale) is shown for the first and second rrodes at signal frequencies of 400 Hz

and 750 Hz in Fig. 19. Similar agreement between calculated and measured distributions was

obtained at a signal frequency of 1500 Hz. Axis crossings of the measured pressure-amplitude

distribution correspond to observed phase reversals on adjacent signal traces.

The influence of the sound-speed gradient on the low-order modes may be seen by com-

paring Fig. 19b (positive gradient) and Fig. 19a (negative gradient) with Fig. 19c (isovelocity

profile). In the isovelocity case (Fig. 19c) the first mode is nearly symmetrically distributed

about middepth. The water sound-speed gradients alter this symmetric distribution and con-

centrate the energy in the low velocity portion of the water column, as can be seen in Figs.

19a and 19b.

The results discussed above were obtained at the site near Panama City, Florida, where

the ocean bottom consists of hard-packed sand. Similar agreement between calculated and ob-

served modal pressure distributions was obtained at the other two sites [13, 221, at which

different bottom types (consolidated limestone and silty sand) were found.

These experiments were performed over tracks selected to have a range-independent wa-

ter depth and sound-speed profile. The results of similar experiments performed over a

sloping-bottom track will be presented in a later subsection.

Mode Excitation

From Eq. (65) we note that if range and receiver depth are held constant, the depen-

dence of the pressure amplitude of the nth mode on the source depth is

P (go ) a: an (h ), (73)
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where to - :0 /H That is, the degree to which a given mode is insonified is proportional to

the eigenfunction at the source depth. In verifying this proportionality. we encounter two

problems which were not present in the measurement of the pressure-amplitude distribution.

The first problem is that measurements involving a number of source depths are not

simultaneous. A set of runs at source depths throughout the water column may require a

measurement interval of an hour or more, in which time the velocity structure of the water

column, and hence the eigenfunctions, may change.

The second difficulty arises from the necessity of inferring the excitation of a mode at the

source location from measurements made at some distance away, frequently several nautical

miles. If irregularities in the duct boundaries or changes of velocity profile with range results

in exchange of a significant amount of energy among the normal modes of propagation, the ex-

citation of a mode at the source cannot be obtained directly from the pressure observed at the

receiver.

The experimental arrangement was similar to that described in the preceding subsection.

Individual modes of propagation were resolved using the dispersion of short signal pulses along

a constant-depth propagation path. Mode orders in the received field were identified by look-

ing for signal phase changes in depth on oscillographic recordings. A single receiver was then

selected for each mode, and the variation in signal strength of that mode with source depth

was determined. Results 120,211 at the Panama City, Florida, site for the first three modes at

750 Hz are shown in Fig. 20. The absolute value of the eigenfunction is plotted, since the

phase changes associated with the axis crossings were not observable. The results verify the

proportionality in Eq. (73). The plotted observed signal strength does not vanish at the

predicted nulls. The vertical motion of the ship (±1 m) prevented holding the source at the

node of the eigenfunction, so this departure from the predicted result is not considered a seri-

ous discrepancy.

Fig. 20 - Measured and calculated depen-

dence of mode ecitation on source dpth

for the first three modes at 750 Hz with the

sound-speed profile shown
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Results similar to those shown were obtained for the few lowest order modes at 400 Hz

and at 1500 Hz. Agreement of predicted and calculated signal-strength variation with source

depth was also obtained at the Campeche Bank site [13.

Mleasured signal strengths of individual modal fields usually show variations from pulse o

pulse. The standard deviations of the signal strength are typically 3% to 10%6 of the mean value
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and may be attributed to the motion of the source and of the receivers caused by surfacewaves or to signal contamination by background noise. On some occasions long-term(several-minute) variations or as much as 10 dB have been observed. These variations couldnot be attributed to noise contamination or transducer motion.

During the July 1969 and March 1970 experiments near the Panama City site suchanomalous long-term variations were observed in the modal signal strengths at individual hy-drophones and in the responses of spatial filters matched to the first and second modes. Thesigrals were found to vary smoothly by as much as 8 dB over an interval of 7 minutes. Todetermine whether these variations were characterized by changes in the vertical pressure dis-tribution or by changes in the total energy appearing in the modal field, coefficients of correla-tion between the signal received by a single hydrophone and the response of the spatial filterwere calculated [23]. Correlation coefficients of 0.72 to 0.92 were obtained for the first mode.The second-mode data yielded correlation coefficients of 0.56 and 0.92.

These results indicate ' i the observed variations were primarily variation in total energycarried in the mode rathe an changes in the vertical pressure distribution associated withthe mode at the receiver ,arently the variations are caused by changes in the modal excita-tion and/or modal attenuation due to changes in oceanographic conditions along the propaga-tion path.

Mode Attenuation

Method

The shallow-water environment is inherently an attenuating medium; an acoustic signalwill always suffer loss as it propagates. Furthermore, according to normal-mode theory (as dis-cussed in an earlier section), each modal field will be attenuated differently and can be charac-terized by a mode attenuation coefficient ,, which is the imaginary part of the eigenvalue k,,.Thus Eq. (13), expressed as the pressure of a single modal field 20 log P,,(r,:)l in decibels,modified for attenuation, and after introduction of the free field source level S. becomes
20 log IP,,(rz) I = S + 20 log (2 ) 12p k' 112 1z,,(20 )u,, (z) I - 10 log r - ar. (74)

The second term on the right-hand side expresses the effect of source and receiver depth, thethird term is cylindrical spreading, and the last term is the mode attenuation term with

a,, = (20 log e) ,,,
the mode attenuation coefficient in decibels per unit length. Thus, if the pressure of a singlemode is measured at a known source depth z receiver depth z, and range r for a knownsource level S and if the eigenfunction u (z) and eigenvalue k,, are calculated from theory(provided the sound speed and the density in the water and bottom are sufficiently wellknown), then a,, can be calculated from Eq. 74).

Equation (74) is valid for a point source radiating at a constant frequency, but in our ex-periments short pulses were used to separate the modes. Since the shallow-water duct is adispersive system, the length of the pulse increases and the maximum pressure amplitude de-creases as the pulse propagates. This effective attenuation of the pulse is accounted for by ad-ding the expression 10 log [To (To + AT,,) I to Eq. (74), where To is the pulse length at
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the source nd AT, is the change in pulse length at range r. To derive this expression, it has
been assumed, as for a square pulse, that the square of the pressure amplitude of a normal-
mode component of the propagated pulse is inversely proportional to the pulse length. The '=
change in pulse length A can be calculated from the bandwidth of the source and the com-
puted group velocitics.

In some cases, when the modes could not be completely separated, the spatial-filtering
technique was used. An equation similar to Eq. (74) can be derived, using the output of the
mode filters instead of the pressure at a single hydrophone, from which a can be calculated
[151.

Results

Measurements of mode attenuation were made off Panama City and on Campeche Bank.
In each area, the water depth was nearly constant over the propagation tracks, and the bottom
was smooth. The bottom in the Panama City area was hard-packed sand, and the Campeche
Bank bottom was semiconsolidated limestone covered by irregular thin patches of fine sand.
This difference is significant, as will be seen later.

The earlier measurements at Panama City were made under variable conditions, and it
was necessary to use all the terms in Eq. (74) to calculate a,. Errors are introduced by the ap-
proximations of the theory as well as uncertainties in the measured quantities such as the
source level S. For the later measurements at Panama City and all the measurements on Cam-
peche Bank a technique was used which eliminated some of these errors. The measurements
were made at a number of range stations at the same source and receiver depth and over a
time short enough that the environmental conditions remained nearly constant. Thus the
measured pressure levels, corrected for cylindrical spreading and dispersion (the latter correc-
tion is usually small), plotted as a function of range should fall on a straight line whose slope
gives the mode attenuation coefficient a". An example is shown in Fig. 21, measured at the
Panama City location. The figure shows corrected pressure levels for the first two modes at 400
Hz. The slopes of the lines give aI - 0.61 dB/km and a2 - 1.58 ciB/km. Assuming the bot-
tom can be represented by a single fluid layer, the plane-wave attenuation coefficient of the

200

Fig. 21 - Typical plot used in determining :;
the mode attenuation coefficient a This 190
example is a plot of Panama City data for
the first two modes at 400 Hz, with circles me
indicating the first mode and triangles indi-
cating the second mode. i

180

r (km)
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bottom e - E2 - e3 can be calculated from Eqs. (22), (23) and (24) . From the first mode we
obtain e - 135 dB/km, and from the second mode we obtain e - 121 dB/km, results which are
consistent and within the range of measured valuesJ241

According to Eq. (22)

all ey", (75)

where y,, ) + /(2). If we assume that

L - 0oft?)

where eO is independent of the frequency f, it follows from analysis of all the Panama City data
that ni - 1.75. This can be seen from Fig. 22, which is a plot of a,, vs ft 75/,, for all modes
and frequencies (400 and 750 Hz). Fitting the points to a straight l;ne gives eO -2.8 10 -3
dB/km. Thus we have that

= (2.8 x 10 3) fl 75 dB/km. (76)

3.0

2.0 - 0 Fig. 22 - Mode attenuation coefficients

.0 A *Ot determined (as shown in Fig. 21)
1.0 from the Panama City data for all ob-

_ ' o * served modes at 400 Hz (solid symbols)
and 750 Hz (open symbols). Circles in-

e o a a dicate the first mode, triangles indicate
the second mode, and squares indicate
the third mode. The straight line is a

-1.0 O 0 least-squares fit, which gives the bot-
tom attenuation coefficient e as ex-
pressed in Eqs. (76) and (75).

0 200 400 600 800

f 1 7 5 Yn

Th requency dependence of the bottom attenuation coefficient expressed in Eq. (76)
falls within the range of values determined by other methods 125-271. However Hamilton [24]
concludes that the attenuation coefficient of natural marine sediments should vary linearly with
frequency. A possible cause of the discrepancy may be the value of C2, the sound speed of the
bottom, used in the analysis. The value used, 2 = 1589 m/s was obtained from bottom-
reflection measurementsl28] made earlier. According to the literature the type of sediment
composing the bottom in the Panama City area should have a sound speed of about 1700 m/s.
The bottom attenuation coefficient e is calculated from the measured mode attenuation
coefficient by use of Eq. (75) which involves y,,. The quantity y,, is calculated theoretically and
strongly depends on C2 ; thus an error in the assumed value of 2 could cause significant error
in e.
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Attenuation measurements were made at two stations on Campeche Bank over two tracks
at each station. The measurement technique was the same as the later Panama City measure-
ments, with results obtained using signal frequencies of 400, 750, and 1500 Hz.

The measured mode attenuation coefficients however could not be reconciled with a
theoretical treatment based on a fluid bottom, as they could for the Panama City data. The
bottom consisted of consolidated or semiconsolidated limestone covered with irregular thin
patches of sand. The compressional-wave sound speed of the bottom was determined from
gruund-wave measurements to be 1900 m/s, in agreement with previously reported measure-
ments 1291.

Such a compressional-wave speed leads one to expect a higher shear-wave speed than is
characteristic of unconsolidated sediments, yet probably lower than the minimum sound speed
in the water column, so that the generation of shear waves in the bottom could be an impor-
tant attenuation mechanism. Unfortunately the NRL normal-mode program was designed to
handle only cases in which the shear-wave speed is greater than the minimum sound speed in
the water column, when there is total reflection at the bottom for some angles and discrete
normal modes exist. It was possible however, by considering the finite shear-wave speed of
the bottom to be a small perturbation on the fluid case, to derive an approximate expression
for the mode attenuation coefficient 113]:

an =P p h u [I +| [ iix )I [1 -IRn(kn)I
2 J (77)

8n =PI 8k,, [ 2 a, 1
where

X = w 2/c?2 (H) - k ] 1/2

yn = [k2 _w 2/c2 11/2

and R,, (ks) is the plane-wave reflection coefficient at the water/bottom interface. All the
quantities in Eq. (77) are calculated from the unperturbed two-fluid model except R (ks),
which is calculated from the usual expression (as given in Ref. 30 for example) for the plane-
wave reflection coefficient at a fluid/solid boundary. It was found that a shear-wave speed of
1000 m/s gave fairly good agreement with the data. The measured and calculated mode at-
tenuation coefficients are given in Table 1.

It can be seen from the table that propagation at station B differs from station A in two
respects. First, the attenuation of the lower modes at station B is generally higher than at sta-
tion A; second, whereas at all three frequencies the first mode at station A has the least at-
tenuation, at station B a higher mode is least attenuated. Both these effects are predicted by
the theory. A detailed discussion of the Campeche Bank results can be found in Ref. 13, and
the Panama City data are discussed in Ref. 15.

Range-Dependent Environments

In the model discussed, the restriction that the acoustical properties of the medium be
range-independent permitted the separation of the acoustic wave equation into two ordinary
differential equations, one containing only the depth coordinate and the other containing only
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l._

Table I - Measured and calculated mode attenuation :X

coefficients at the Campeche Bank site (Fig. 15) r
rn

the radial coordinate. These equations were solved separately, and the solutions were con-

bined to obtain the description of the acoustic field. If the environment is range dependent,

the wave equation cannot be separated rigorously, making the solution of the wave equation

considerably more difficult. Since exact solutions for the range-dependent problem do not ex-

ist, approximation techniques are necessary.

If the environment changes sufficiently slowly with range, we may obtain approximate

solutions based on the constant-depth normal-mode model. To do this, we make two assump-

tions. The first assumption is that the mode index is conserved over the propagation path

[16,17]. If this assumption is correct, energy propagating in any normal mode is not

transferred to another mode by the range-dependent environment. The second assumption is

that at any point along the propagation path the local properties of the individual normal

modes, such as vertical pressure distribution, may be obtained from the constant-depth model,

using the environment at the point of interest. Thus the normal mode is assumed to adapt to

the local environment.

If this approximation is valid, we may obtain quantities such as the local vertical pressure

distribution, the local wavenumber k,, and the local attenuation coefficient directly from the

range-independent model. Description of the acoustic field over an extended region may re-

quire the independent solution of Eq. (72) at many points.

To calculate transmission loss over some track in a range-dependent environrent, we

need in addition to the quantities discussed a method of determining the amount of energy

carried in each of the allowed normal modes. In the range-independent model the excitation
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Mode Attenuation Coefficient 8,n
Fre- Track (dB/m)

quency Direc- Mode I Mode 2 . Mode 3

(Hz) tion 1-es ac Ma.|Cl.|Mas. |Calc.
Station A

400 East 3.7 3.4 8.8 _
West -3.7 ---

750 East 2.1 1.9 _ 5.0 - -

West 2.0 2.0 _ 5.3 - -

1500 East 1.2 1.1 2.0 2.1 - 3.9

West 1.6 1.1 3 v .6 _

Station B

400 East - 7.8 I _ _

West - 5.8 _ _ _
750 East - 7.0 1.8 2.1 _ 6.6

West - 5.3 4.5 3.9 _ 4.9

1500 East - 3.4 - 8.3 _ 1.6

West _ 2.7 - 5.9 _ 6.0
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of each mode is proportional to the value of the modal eigenfunction at the source depth. The

modal excitation in the range-dependent model is calcuited similarly, using the eigenfunctions

calculated from the environment in the vicinity of the source. This approximation, which is

difficult to verify directly by experiment, is similar to the approximation used in obtaining the

local pressure distribution. The obstacle to experimental verification is that the modal excita-

tion is inferred from measurements not near the source but at sufficient distance from the

source for dispersion to effect modal separation of the signal pulse. To interpret the results of

such an experiment, we must assume that the nonuniformity of the propagation path did not

convert energy from one mode of propagation to another.

In November 1973 an experiment, similar to the one described in connection with Fig.

19 for a constant-depth path was carried out over two sloping-bottom tracks [221. Measure-

ments were made of the dependence of the pressure amplitude of individual modal fields on

source depth and on receiver depth. The source stations were chosen to have a local acoustic

environment different from that at the receiver. Results for the first-order mode at 400 Hz are

shown in Fig. 23. On the downslope propagation path (Fig. 23a) the receiver was at zero range

and source stations were at ranges 9 and 17 km. The water column exhibited an essentially iso-

velocity sound-speed profile over the track. At zero range the measured dependence of the

pressure amplitude on receiver depth for source depth 18 m at range 9 km (dots) is compared

with the eigenfunction calculated from the constant-depth model and the receiver's local en-

vironment. Similar agreement was obtained for the modal pressure distribution at zero range

when the source was operated at other depths at this 9-km-range station and at the 17-km-

range station.

The dependence of the pressure amplitude of the first-order mode on source depth, keep-

ing receiver depth and range fixed, is plotted (squares) at the source range in comparison with

the eigenfunction calculated from the constant-depth model and the environment at that

range. At both range stations variation in signal strength with source depth agreed with calcu-

lated eigenfunction, indicating that over this track the assumption of adaptation of the mode to

the local environment and the neglect of mode coupling were justified. Similar agreement was

obtained for the second-order mode. No higher-order mode was identified in the signal propa-

gated over this track.

The experiment was repeated using another bearing. On this bearing water depth in-

creased with range and the sound-speed profile changed from a slight negative gradient near

the receiver to a strong negative gradient at the source stations, the gradient becoming stronger

with increasing range.

Data from the three source stations occupied are shown in Fig. 23b. At zero range a typi-

cal observed pressure dependence of the first mode on receiver depth, keeping the source

depth and range fixed, is compared with the eigenfunction calculated from the constant-depth

model and the receiver's environment. The vertical distribution of pressure is seen to have

adapted well to the receiver environment in spite of the considerable change in the shape of

the eigenfunction along the track (solid lines at nonzero range).

Comparisons of the dependence of the pressure amplitude on source depth, keeping re-

ceiver depth fixed, with the eigenfunction calculated using the source station's environment is

shown in the plots at nonzero range. Good agreement is found at the 8-km-range station and

for the deeper source positions at the 12-km station.
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(a) Track with gradually changing depth

E
X
0-
0iN

RANGE (km)

(b) Track with rapidly changing depth

Fig. 23 - Mode amplitude functions for the first mode at 400

Hz over tracks with changing depths

Similar measurements were made for the second-order and third-order modes on this

track. In all cases the vertical pressure distributions at the receiver agree well with the eigen-

functions calculated using the receiver's environment. The dependence of signal strength on

source depth did not agree in all cases with that predicted by the constant-depth model using

the environment at the source. Agreement was best for the first-order mode at the 8-km and

12-km stations. Agreement was poor for the first-order mode at the 16-km station and for the

second-order and third-order modes at all stations. Lack of agreement between the predicted

and calculated source-depth dependence of the modal pressure indicates either that the approx-

imation of local separability is not valid or that the modes of propagation are coupled with

'*1
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changing environment. The bottom slope is no greater at the 8-km and 12-km stations than at
the eceiver on the downslope propagation track (Fig. 23a), for which track the approximation
of local separability was found to be valid. The presence of mode conversion therefore appears
to be the more probable cause or the disagreement.

The results of this experiment indicate that realistic models of transmission loss in
continental-shelf waters with range-dependent environments may have to include the effects of
mode conversion.

A comparison of measured transmission loss (dots) and loss calculated using the range-
dependent model is shown in Figs. 24a and 24b. In the experiment two CW projectors, one
operated at 29 Hz and the other at 121 Hz, were towed radially from the receiver (at zero
range) along a track which traversed a bank. Bathymetry along this track is shown in the
lower illustrations. The calculated loss was obtained from the incoherent mode sum. The
coherent mode sum showed interference effects of the same magnitude (10 to 15 dB) as the
scatter in the data; thus the scatter can be attributed to modal interference phenomena.

Calculated loss is seen to be in fair agreement with the measurements. Loss increases
slowly to range 95 km. Beyond that range loss increases rapidly. The 5-dB discontinuity in the
29-Hz loss associated with the decrease in source depth at range 61 km is also seen in the cal-
culated loss. Some details of the measured loss differ from results of calculations. Loss meas-
ured at 29 Hz is -5 dB less than that calculated at range 58 km, and the discontinuity in the
loss in Fig. 24b predicted at range 61 km is not reflected in the measurements. These
discrepancies are not considered serious, since information regarding bottom composition was
available only at the endpoints of the track. Errors in the assumed ocean-bottom structure
rather than errors in the model may account for the discrepancies at intermediate points.

Thus, in spite of the indications of mode conversion derived from observations of indivi-
dual normal modes, the transmission-loss model employing the adiabatic approximation pro-
duced results in fair agreement with experiments.

Numerical Results from the Scattering Model

Reflection Coefficients

In the theory section we derived an expression for the reflection coefficient of a rough
ocean surface which is described by an rms height and a wave-height power spectrum which
describes the spatial characteristics of the ocean surface. We also derived an expression for the
reflection coefficient in the Kirchhoff limit (discussion following Eqs. (45) and (46)). We note
here that in the Kirchhoff limit the mean value of the reflected field does not depend on the
directional properties 6f the ocean surface [12] but depends on just its rms height.

We now present some calculated results for reflection from an ocean surface described by
the Pierson-Moskowitz wave-height spectrum[31]. This model describes a fully developed
sea and does not include long-range swell components which might have sufficient regularity to
simulate a deterministic diffraction grating. The ocean-surface frequency spectrum we use is
given by

'F(Qs) = (2/a7)4( )cos2 , 0 1 < r/2

=0,7r 2 ( jf ir,
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RANGE (km)

400
400 . . .

500 _ _ _ _. A A A HA n t 0 50 10 110 120 1

_ _ 0 lo 2 0 3 0 4 0 D u ( n)

RANGENtm)

Fig. 24a - Acoustic transmission loss at 29 -lz (top) and bathymetry (bottom) over a sloping-bottom track.

The dots are measurements, and the curve is the calculated loss. At 61 km range (marked C) both sources

were raised to accommodate changing bathymetry
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Fig. 24b - Acoustic transmission loss at 121 Hz (top) and bathymetry (bottom) over a sloping-bottom track
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where

)(n) - 0.0081 g
2 -e -0.74 (10/11)4

The angle is the direction of the wind; that is, 0 - 0 denotes the direction parallel or an-
tiparallel to the wind velocity, since in this model upwind and downwind are indistinguishable.
We have used the same cosine-squared dependence as Fortuin [321. lo is given by gU,
where U is the windspeed and g is 9.8 m/s2 . The wavenumber spectrum and the frequency-
number spectrum cP are related through the dispersion relation

W ) -

We have calculated the reflection coefficient using the Pierson-Moskowitz spectrum for a
few sample cases. Figure 25 displays the results. Three curves on each graph are for the three
different acoustic bearing angles relative to the wind direction as indicated. For these examples
and for this particular directional wave spectrum, the refection loss is greatest when the bear-
ing of the acoustic propagation is parallel (or antiparallel) to the wind. The fourth curve on
each of the graphs gives the reflection coefficient in the Kirchhoff approximation, with the rms
height of the surface roughness for each case being obtained from the Pierson-Moskowitz
model. In particular, for windspeeds of 5 and 15 m/s, the rms heights are 0.09 and 0.85 m
respectively.

Attenuation Due to Scattering

In this section we present some transmission-loss calculations for different shallow-water
environments. Including attenuation, the acoustic pressure at a range ris (see Eq. (13))

n U,, (Zo )Un () ik r -8,r
(Sirr)1/2 nil k2 e e

where ,, is the total attenuation coefficient including not only roughness but also the effect of
a lossy bottom. Since we are concerned only with attenuation, we can average out the effect of
receiver depth by defining our transmission loss as follows:

TL 10 log |M E P2(z,,)J.

where P(:,,) is the acoustic pressure at the m th receiver and M is the number of receivers; for
the case that follows we will take M = 10 with the ten receivers equally spaced throughout a
100-m water column. Finally, as a measure of attenuation we define the function at range r
to be

rb = r - [TL(with roughness) - TL(without roughness)],

where the subscript s or b refers to surface or bottom roughness, since we will deal with each
one separately. The units of F are dB/km; r is a measure of attenuation of the total acoustic
field due to scattering with geometric spreading and bottom loss eliminated. It is unfortunately
a range-dependent quantity, but at a given range it is indicative of the importance of the total
scattering loss whereas the scattering coefficients of the individual normal modes do not indi-
cate the strength of the excitation of the normal modes. We now present some numerical cal-
culations of r for different shallow-water environments. Most of the results are or surface
scattering loss, but we also present some results for bottom scattering.
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(a) Windspeed - 15/ms; frequency - 750 Hz
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(c) Windspeed -5 ms; requency - 1500 Hz
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(b) Windspeed -5 mis; frequency - 750 Hz
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Fig. 25 - Reflection loss from an ocean surface described by the Pierson-Moskowitz model of a fully developed sea.

The angles 0', 45°, and 90' are acoustic bearing angles relative to the direction or the wind. The Kirchhoff result for a

surface with the same rms height is also shown.
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These calculations can be performed for an arbitrary range-independent sound-speed
profile. For the work presented here we have chosen the three generic profiles as shown in
Fig. 26. We have also chosen three bottom-sediment types as listed in Table 2. These types
were selected from Hamilton's acoustic classification of marine sediments 124]. Hamilton
defines K by the relation a - K, where a is the attenuation coefficient in dBm for a plane
wave traveling in the bottom sediment and f is the frequency in kilohertz. We use the same
ocean model as we used in the preceding subsection for the reflection coefficients.

I

20 m

to m

'1^

I-

P-

,Vt

I-M

m

BOTTOM SEDIMENT

Fig. 26 - Isovelocity (1), downward refracting (11), and up-
ward refracting (111) sound-speed profiles used in the
Lransmission-loss calculations. A, B and C are sediment
types as listed in Table 2.

Table 2 - Properties of three bottom sediments

Sediment Sound-Speed Ratio Density (P2) K*
________ ________C 2 /ct (gfcm 3) _ _ _

A. Coarse sand 1.201 2.03 0.46

B. Silty sand 1.096 1.83 0.65

C. Sand-silt-clay 1.032 1.58 0.20

'Hamilton 1241 defines K by a(dB/m) K fkHz).

We have evaluated the function r using the Pierson-Moskowitz spectra for a few sample
cases. These are shown in Figs. 27 and 28.

Figure 27 shows some results at 50 Hz. The results for profile 11 (Fig. 27a) are for nega-
tive profiles. These cases indicate a saturation effect after a certain wind velocity is reached.
Cases 11A and IB have four and three normal modes respectively, of which only one in each
case is trapped below the thermocline. Because the other modes that interact with the surface
are stripped away, we are left with only the trapped mode, which does not interact with the
surface. Hence we have this saturation effect. Case IC has only one mode, which is barely
trapped below the thermocline; therefore no surface loss should be observed. Figure 27b illus-
trates the results for an upward refracting profile. There is no saturation effect. Case C is
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(a) For sound-speed profile 11
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(b) For sound-speed profile i

Fig. 27 - The function r at 50 Hz and range r -25 km versus the windspeed for
sediment types A, B, and C

significantly different from cases A and B. indicating the importance of bottom type when cal-
culating surface loss.

Figures 28 shows sample results at 500 F4z. This figure includes the effect of wind direc-
tion relative to the bearing of acoustic propagation. The calculated results indicate a large sr-
face loss along the direction of the wind.

Figures 28a and 28b are for negative profiles and again indicate the saturation effect.
However saturation occurs at a significantly lower windspeed than for the same cases at 50 Hz.
Even more significant is case 1IC (Figs. 27a and 28b); at 50 Hz there is no interaction with the
surface and hence no surface loss, but at 500 Hz there is surface interaction and hence surface
loss. No saturation effects are predicted in Fig. 28c and 28d, which are for isovelocity profiles,
or in Figs. 28e and 28f, which are for an upward refracting profile. For these profiles, particu-
larly the upward refracting profile, the surface loss is significant when compared to the bottom
attenuation due to the lossy bottom sediments. The transmission loss with bottom attenuation
for these profiles was about 70 dB, of which 5 to 10 dB can be attributed to the lossy bottom
sediments. For the isovelocity profile for windspeeds greater than about 10 m/s the surface
contribution to transmission loss begins to exceed dB at this 25-km range. For the upward
refracting profile the surface loss is much larger.
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(a) For profile 11 and sediment (b) For profile 11 and sdiment

type A type C
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(c) For profile I and sedimen
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Fig. 28 - The function r, at 500 lIz and r - 25 km

vcrts the windspeed
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Figure 29 is an example of some results for the case when the ocean bottom is rough and

the ocean surface is smooth. In this figure both curves are calculations made using the bottom

parameters associated with coarse sand, The calculations were was made in the Kirchhoff limit.

The curves indicate a greater loss for the negative profile than for the positive profile. There is

no saturation effect, because for this case no mode was trapped in the upper layer, so that all

modes interacted with the bottom. When the acoustic wavelength is such that the water Mr

column supports a surface duct, the saturation effect will appear.

Fig. 29 - The runction Itb at 50 Ht and r - 25 km

versus the rms height of the bottom roughness for

to2 profiles 11 and II and sediment type A

I63
5 l0 Is

RMS HEIGHT OF ROUGHNESS (Mt

CONCLUSIONS

Any mathematical model of a real physical phenomenon, to be tractable, must employ

approximations for the physical properties of the environment. The suitability of those ap-

proximations depends on the precision with which the phenomenon needs to be predicted. In

the case of acoustic propagation in shallow ocean water the principal environmental conditions

of concern are the conformation, structure, and acoustic properties of the seabed and of the

overlying water. Determining the needed complexity in modeling these features has been ap-

proached by an iterative process involving trial models and at-sea measurements. The wave

equation for the physical model is solved by numerical methods and implemented on a high-

speed general-purpose computer. The computer program is formulated to predict for each mo-

dal field the level of excitation, the pressure amplitude distribution with depth, and the at-

tenuation with range. The total acoustic field is then obtained for any field point by summing

the modal fields at the appropriate range and depth. The models have been evaluated in at-sea

experiments in which special techniques were used to resolve individual modal fields, which

were then examined to determine the excitation, amplitude distribution, and attenuation as

functions of frequency, source depth, and range. Measurement results were compared with

predictions to determine the adequacy of the model and to provide guidance for further

refinement if necessary.
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It has been demonstrated that the model in its present state of development can in most

cases predict the signal field with sufficient detail and accuracy to be a useful tool for system

design, performance prediction, and tactics. Certain recognized problem areas remain. The -

most serious of these are in predicting the field in an environment (sound-speed profile in the

water, water depth, and bottom properties) which changes rapidly with range and in obtaining

estimates of bottom properties to be used as inputs to the model.

The techniques developed for examination of individual modal fields and the data ob-

tained in the experimental program described in this report together with the resulting models

provide a technology base for further exploratory development in shallow-water acoustics. The

basic propagation model constitutes the core of technology required for systems applications. It

is an intrinsic part of ambient-noise and reverberation models and serves as a point of depar-

ture for developing a knowledge for higher order effects (fluctuations and coherence), which if

essential for performance prediction. The areas of noise, fluctuations, and coherence have as

yet received little attention in shallow-water studies. There is a strong need for work in these

areas.
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